
Remote mapping of leafy spurge
(Euphorbia esula, L.) in
Northwestern Colorado

Chloe M. Mattilio1*, Daniel R. Tekiela2 and Urszula Norton1

1Department of Plant Sciences, University of Wyoming, Laramie, WY, United States, 2United States
Department of Agriculture, Invasive Plant and Pesticide Use Program, United States Forest Service,
Lakewood, CO, United States

Leafy spurge (Euphorbia esula L.) has been introduced to the Yampa River in
Northwestern Colorado for over 40 years and flood and runoff events transport
leafy spurge propagules onto adjacent landscapes. The spread of leafy spurge
beyond the river channels has yet to be mapped and recorded, and this research
was conducted tomap leafy spurge occurrence in the Yampa River Valley. Significant
stakeholder mapping efforts took place in the summer of 2019–2021, leading to
excellent spatial data on leafy spurge presence and absence along the main channel.
In summer 2019, multispectral SPOT seven satellite imagery, stakeholder ground
mapping efforts, and bright yellow-green leafy spurge bracts were used to interpret
imagery, identify dense, unobscured patches of leafy spurge, and digitize them.
Spectral signatures from training samples for leafy spurge and other land cover
classes (generalized as “not leafy spurge”) were then used to train a Random Forest
machine learning classification. In the summer of 2021, generated classification
maps were compared to multispectral satellite imagery and stakeholder ground
mapped leafy spurge presence. Mismatches were identified, and 271 validation
locations were identified, navigated to, and evaluated for leafy spurge presence.
Leafy spurge training samples were classified with 96% accuracy. Correctly classified
leafy spurge locations had higher leafy spurge coverage and lower overstory canopy
than missed leafy spurge locations. Leafy spurge growing beneath shrub canopy or
growing as individual plants along the riverbanks were more likely to be missed. A
frequency analysis for other plant species found at validation locations determined
that smooth brome (Bromus inermis Leyss.), dandelion (Taraxacum officinale L.), and
willow (Salix sp.) were most frequently misclassified as leafy spurge. In conclusion,
multispectral satellite imagery was useful at remote detection of leafy spurge in open
areas with dense leafy spurge coverage, but more work must be done for
identification of sparse and diffuse leafy spurge infestations.
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1 Introduction

Leafy spurge (Euphorbia esula L.) is a perennial invasive weedy species that has successfully
established across a wide range of ecosystems and has a noxious weed designation in 22 US
states (Goodwin et al., 2001). Leafy spurge is difficult to eradicate, despite heavy use of
herbicides, targeted grazing, and various biocontrol agents (Goodwin et al., 2001). Leafy spurge
is adapted to a wide range of growing conditions, including disturbed areas, rangelands,
pastures, and river bottoms (Hyder et al., 2008).

OPEN ACCESS

EDITED BY

Jane Southworth,
University of Florida, United States

REVIEWED BY

Yu-Hsuan Tu,
King Abdullah University of Science and
Technology, Saudi Arabia
Alireza Sharifi,
Shahid Rajaee Teacher Training
University, Iran

*CORRESPONDENCE

Chloe M. Mattilio,
cmattili@uwyo.edu
chloe.mattilio@gmail.com

SPECIALTY SECTION

This article was submitted to Satellite
Missions, a section of the journal
Frontiers in Remote Sensing

RECEIVED 01 November 2022
ACCEPTED 04 January 2023
PUBLISHED 18 January 2023

CITATION

Mattilio CM, Tekiela DR and Norton U
(2023), Remote mapping of leafy spurge
(Euphorbia esula, L.) in
Northwestern Colorado.
Front. Remote Sens. 4:1086085.
doi: 10.3389/frsen.2023.1086085

COPYRIGHT

© 2023 Mattilio, Tekiela and Norton. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Original Research
PUBLISHED 18 January 2023
DOI 10.3389/frsen.2023.1086085

https://www.frontiersin.org/articles/10.3389/frsen.2023.1086085/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1086085/full
https://www.frontiersin.org/articles/10.3389/frsen.2023.1086085/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2023.1086085&domain=pdf&date_stamp=2023-01-18
mailto:cmattili@uwyo.edu
mailto:cmattili@uwyo.edu
mailto:chloe.mattilio@gmail.com
mailto:chloe.mattilio@gmail.com
https://doi.org/10.3389/frsen.2023.1086085
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2023.1086085


With blue-green stems, linear leaves, small green flowers, and
bright yellow bracts, mature leafy spurge is easily identifiable.
Individual stems can produce over 200 seeds annually, which when
mature, can be expelled up to 15 feet from the plant (St. John and
Tilley, 2014). Seeds are small and buoyant, easily transported by water
to areas downstream. Tissues contain a milky white sap that contains
ingenol, which is released when plants are injured (Larry Leistritz,
2004). Once ingested, leafy spurge can be toxic to livestock, horses and
wildlife, and result in significant economic losses to producers and
other land users (Goodwin et al., 2001).

Remote sensing for leafy spurge mapping has been conducted since
1995, when leafy spurge was mapped with real color aerial imagery at
Theodore Roosevelt National Park and found to be associated with high
proximity to waterways (r2 = .98) (Anderson et al., 1996). Multispectral
sensors, which record reflectance beyond the visible spectrum in
3–10 spectral bands, have been used in a mixed-grass prairie in
North Dakota (Casady et al., 2006) Leafy spurge was mapped with
67% accuracy, with decreasing classification accuracy when grown with
herbaceous vegetation (Casady et al., 2006).

Successful remote detection of leafy spurge depends on capturing
spectral differences between leafy spurge and other land cover, and imagery
with limited spectral bands can make identifying leafy spurge challenging
(Hunt andParker Williams, 2006). In a heterogeneous landscape near
Devil’s Tower National Monument Crook County, Wyoming,
hyperspectral (remote sensing imagery consisting of hundreds to
thousands of spectral wavelengths) classifications performed best in
prairie vegetation, and better in bottomlands than uplands, which was
caused by dense leafy spurge cover in riparian areas and longer periods of
blooming in moist habitats (Williams and Raymond, 2002). In a study by
Parker and Hunt. (2004), leafy spurge was well correlated with higher near
infrared (NIR) reflectance, which is also known to be well correlated with
dense vegetation cover. Leafy spurge was detected with 95% accuracy, and
classification performed well in mixed-prairie and riparian vegetation than
in forested areas (Williams and Raymond, 2002). In the sagebrush
(Artemisia tridentata subsp. tridentata) steppe of Swan Valley, Idaho
with 84%–94% accuracy (Glenn et al., 2005) and with 96%–99.5%
accuracy at the mixed-grass prairie at Theodore Roosevelt National
Park (O’Neill et al., 2000).

Leafy spurge has been spreading along the Yampa River main
channel and constructed irrigation ditches for over 40 years (Yampa
River Leafy Spurge Association, 2018; Turnage, 2021). The Yampa
River flows for 250 river miles in Moffat and Routt Counties,
Colorado, United States. Increased presence of leafy spurge in this
area can be indicative of disturbance and large flooding events (Yampa
River Leafy Spurge Project, 2018; Goodwin et al., 2001). The Yampa is
one of the last free-flowing rivers in the Western United States, with
seasonal flooding temporarily inundating sandbars and terraces away
from the active river channel (Merritt and Cooper, 2000).
Understanding the current extent of leafy spurge invasion with
high spatial resolution is critical as its presence has already been
observed beyond the riverbanks and floodplains, such as upland
meadows, hillslopes and mountain ridges. High spatial resolution is
a priority, as small satellite clusters of leafy spurge away from the main
invasion are more likely to be effectively managed and to spread to
new areas (Westbrooks, 2004). This project aimed to: 1) produce
detailed maps of the current leafy spurge infestation along the Yampa
River corridor with SPOT seven satellite remote sensing and 2), visit
locations and validate leafy spurge presence or absence to describe
classification performance.

2 Materials and methods

2.1 Study area

The Yampa River flows from the FlattopsWilderness to a confluence
with the Green River deep inside of Dinosaur National Monument. The
stretch of the Yampa River under investigation flows through the Moffat
and the Routt Counties, between Hayden, Colorado, and Dinosaur
National Monument (Figure 1). There, leafy spurge has already
invaded riparian areas such as riverbanks and islands and is now
advancing to uplands covered by juniper forests, sagebrush shrublands,
grasslands, and agricultural fields. Figure 2.

2.2 Data collection

2.2.1 Ground mapping of leafy spurge
Groundmapping of leafy spurge took place during over three summers

between 2019 and 2021, as water levels allowed each year. Mapping was
conducted by stakeholder volunteers from the Yampa River Leafy Spurge
Project (YRLSP) via water to map the extent of infestation along the
Yampa’s main channel and beyond riverbanks. Coverage was extensive,
with one or more observers scanning the riverbanks of the main channel
for leafy spurge rafts to map the perimeter of the invasion to full extent or
property lines where owners rejected mapping requests. During each stop,
the location and presence of leafy spurge (density, abundance, and patch
size), land characteristics, vegetation type and overstory canopy cover were
recorded on location service enabled tablets equipped with Map It Fast
(Agterra, 2017) (Table 1.a). All information was imported into a
Geographic Information System (GIS) (ArcMap 10.5 (ESRI, 2018) and
used for identification of leafy spurge presence visible in the imagery. These
mapped polygons were not used directly as classification training samples,
as the imagery represented one sample in time, leafy spurge growing
beneath shrubs and trees, and leafy spurge infestations that were too small
to be represented by tablet spatial accuracy and imagery spatial resolution.

2.2.2 Satellite imagery acquisition
YRLSP funds were acquired and budgeted to purchase one set of

SPOT seven satellite imagery from early July of 2019 from L3Harris
Geospatial (L3Harris Geospatial, 2019). The beginning of summer in
2019 was cool and wet, so this sampling represents the late peak bloom
of 2019. The spatial extent of this satellite imagery and resulting
classification covers the area from Hayden, Colorado to Cross
Mountain within 1.5 miles of the Yampa River channel (Figure 1).
The imagery consists of five spectral bands, one panchromatic
(1.5 m × 1.5 m pixels, 450–745 nm) and four multispectral: red
(625–695 nm), green (530–590 nm), blue (450–520 nm), and near
infrared (NIR, 760–890 nm) (6 m × 6 m pixels). Multispectral
imagery was resampled to approximately 4 m × 4 m pixels using
the finer resolution panchromatic band in ArcMap to increase the
spatial resolution and identify the smallest clusters of leafy spurge
plants possible with this imagery set. Despite this resampling of pixels
of the spectral imagery, pan-sharpened imagery showed spectral
patterns that delineated land cover classes that were difficult to
distinguish, like riparian hay meadows, sparse rangeland vegetation,
and wetlands. Once pan-sharpened, band combinations and
representation were experimented with to highlight contrasts
between ground mapped leafy spurge polygons and other
recognizable land cover classes.
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2.3 Data analysis

2.3.1 Training and classification
One hundred and eight training polygons of unobscured leafy

spurge were digitized based on interpretation of the YRLSP ground
mapped leafy spurge presence in the imagery in ArcMap. Volunteer
ground mapping work was essential for development of these training
samples, as they covered the main channel comprehensively with
locations and detailed descriptions of leafy spurge presence. In
addition, 96 polygons were developed for other land cover classes
within the study area (water, forage fields, other vegetation, roads,
structures, bare ground, etc.) and combined to create a “not leafy
spurge” dataset. These training polygons represent the leafy spurge
invasion as of imagery collection in July of 2019, and were imported
into Program R, where SPOT seven imagery spectral reflectance values
(red, green, blue, and NIR) were extracted to train the classification
algorithm for leafy spurge and not leafy spurge. The method used a
machine learning technique known as Random Forest (Breiman and
Cutler, 2001), from the random Forest package in Program R (Liaw
and Wiener, 2002). For this classification, 101 trees were grown, and
20% of the training samples were reserved for an internal validation.
Two classification maps were developed with both, binary
classification of “leafy spurge” and “not leafy spurge” classes using
a probabilistic scale from 0 (most likely to be not leafy spurge) to 1
(most likely to be leafy spurge).

An accuracy assessment of the binary leafy spurge classification
was conducted using a confusion matrix of classified and digitized
training data, and users’ accuracy, producer’s accuracy, and overall
accuracy. The kappa coefficient for the classification accuracy was
calculated. To investigate differences in reflectance for red, green, blue,
and NIR bands, correctly and incorrectly classified ground mapped
leafy spurge presence polygons were selected from the classification
map, and reflectance values were extracted for all four spectral bands
for each class. To test differences in reflectance for detected andmissed
leafy spurge polygons for each spectral band, a two-way analysis of
variance (ANOVA) was conducted in Program R.

2.3.2 Validation
To better understand classification performance, ground

validation was conducted by identifying 271 points of interest,
especially suspected classification mismatches within the study area.
These areas were identified and discussed in 2020 during multiple
remote open table discussions with Yampa River stakeholders in who
know the area well and conducted ground mapping efforts for the
YRLSP. These locations were selected to cover a broad range of habitat
types and areas with known leafy spurge infestations. Within these
locations, four or more pixels of the same class were generalized to
make polygons of the same class. To avoid GPS inaccuracies,
validation points were placed within these polygon centroids. In
June of 2021, these validation points were visited by floating the

FIGURE 1
Map of the Yampa River study area, with location in Colorado (upper panel) and closer view of study area (lower panel) with satellite imagery extent
buffered to 1.5 miles from river’s edge (pink).
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river and on foot with a handheld preprogrammed GPS unit. Selected
locations were scattered at the Yampa River State Wildlife Area,
through Craig, Colorado, in the Little Yampa Canyon, and through
Axial Basin. In addition to confirming leafy spurge presence and
absence, binary classification performance (correct or incorrect),
geomorphologic type, vegetation type, count and identification of
other species present, inundation frequency, leafy spurge cover,
canopy cover, and bare ground were recorded (Table 1 b).

Binary and continuous classification maps were exported back to
ArcMap where classification values were extracted from both,
classification methods for leafy spurge presence polygons from
Yampa River Leafy Spurge Project ground mapping and from
2021 validation points. Proportion of correctly identified leafy

spurge polygons from the binary classification were calculated for
each level of infestation characteristic (i.e. trace, low, moderate, and
high for the overstory canopy cover infestation characteristic).
Characteristics recorded were geomorphological features, vegetation
type, leafy spurge cover and density; overstory canopy cover and the
presence of bare ground (Table 1.a). Binary classification (leafy spurge
vs. not leafy spurge) was fit to a logistic regression to determine the
effect of infestation on classification accuracy from ground mapped
data. The same approach was applied to the 2021 validation points,
with proportional correct classification recorded for each level of
infestation characteristic and binary classification. Results were
fitted to a logistic regression model to determine which infestation
characteristics (geomorphologic type, vegetation type, count of other

FIGURE 2
a and b. Random Forest classification predictions for imagery study area (magenta outline) for a binary classifier (A) and a probabilistic classifier (B). The
binary map shows pixels not classified as leafy spurge as colorless (negatives) and pixels classified as leafy spurge in yellow (positives). The probabilistic model
represents values from 0 to 1, for least likely to be leafy spurge in dark green and most likely to be leafy spurge in red.

TABLE 1 a and b (top to bottom). Categorical infestation characteristics recorded and levels of each infestation characteristic from a. Ground mapped leafy spurge
polygons and b. Validation leafy spurge locations.

Infestation Characteristic Level 1 Level 2 Level 3 Level 4

Leafy Spurge Abundance Single Scattered Scattered Dense Dense Monoculture

Bare Ground Coverage Trace Low Moderate High

Overstory Canopy Coverage Trace Low Moderate High

Geomorphologic Type Active Channel Bank Seasonally Inundated Upland

Vegetation Type Riparian Herbaceous Riparian Shrub Riparian Forest Sparsely Vegetated

Infestation Characteristic Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Discrete Patch No Yes

Inundation Type Never 100 years 20 years Annual

Geomorphologic Type Active Channel Bank Seasonal Creek Seasonal Floodplain Agricultural

Vegetation Type Riparian
Herbaceous

Riparian Shrub Riparian Forest Herbaceous Irrigated Pasture Upland

Count of Other Plant
Species

0 1 2 3 4 5 6 7
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species present, inundation frequency, proportional leafy spurge
cover, proportional canopy cover, and proportional bare ground)
affect classification accuracy within the validation dataset
(Table 1 b).

3 Results

3.1 Imagery classification

Leafy spurge training samples were identified in the Random
Forest classification of multispectral satellite imagery with an
overall accuracy rate of 90.7%. The same classification resulted in a
95.4% class producer’s accuracy and 88% class user’s accuracy for leafy
spurge (positive) (Table 2). The final accuracy metric calculated for the
remote sensing classification was a coefficient of agreement, kappa
(ranges from −1–1, with values close to 0 showing that the
classification performed no better than random and one describing
the data perfectly). Kappa was equal to 0.902, indicating that our
remote sensing classification described our leafy spurge population
samples well. Correctly classified leafy spurge spectral reflectance was
not significantly different from missed leafy spurge reflectance for the
red, green, and blue spectral bands, but was significantly higher for the
NIR spectral band (p-value = 0.031) (Table 3).

Across a range of environmental and infestation conditions, the
number of correctly mapped presence locations varied in the ground
mapped dataset. Predictors that decreased correct classification
likelihood of ground mapped leafy spurge polygons were single
leafy spurge plant infestations (p-value = 0.011), leafy spurge
located on riverbanks (p-value = 0.036), leafy spurge growing with
shrubs (p-value = 0.021) and leafy spurge growing with trace amounts
of bare ground (Table 4).

3.2 Classification validation

Much like the groundmapped leafy spurge dataset, the 271 ground
validation points selected and visited represented a wide range of
environmental and infestation conditions. Of these validation points
that were classified as leafy spurge, 102 out of 190 were correctly
classified (54% classification accuracy for leafy spurge). 190 out of
271 points were classified as leafy spurge (70%), 81 were classified as
not leafy spurge (30%), and 159 out of the 271 total validation points
were correctly classified (59% overall classification accuracy rate in the
field). Successful classification of validation locations varied and
predictors that increased likelihood of validation areas being
correctly classified as leafy spurge are infestations that have higher
leafy spurge percent cover (p-value = 5.8e-08) and infestations that
have distinct boundaries, or discrete patches (p-value = 0.0480)
(Table 5). Plant species that were misclassified as leafy spurge and
growing alongside missed leafy spurge were smooth brome (Bromus
inermis Leyss.), willows (Salix sp.), and dandelions (Taraxacum
officinale L.) (Figure 3), while Sandberg bluegrass (Poa secunda
J. Presl), western wheatgrass (Pascopyrum smithii Rydb.), poverty
weed (Iva axillaris Pursh), dandelions, curlycup gumweed (Grindelia
squarrosa Pursh.), tamarisk (Tamarix ramosissima L.), and whitetop
(Lepidium draba L.) were misclassified as leafy spurge (Figure 4).

4 Discussion

The classification method identified mapped leafy spurge training
samples with 95.4% accuracy training and an overall classification
accuracy of 90.7%. If mapping was to take place again however,
satellite imagery with additional wavelengths of near infrared spectra
may be useful, as SPOT seven imagery NIR only covers the 760–890 nm

TABLE 2 Confusion matrix for Random Forest classification of imagery pixels as leafy spurge (positive) and not leafy spurge (negative) with training and validation
samples correctly classified contributing to class and overall classification accuracy and misclassified other ground cover (false positives) and missed leafy spurge
training samples (false negatives) and reducing class and overall classification accuracy.

Training class

Positive Negative Producer’s accuracy (%) Kappa Overall accuracy (%)

Classification Class Positive 103
True positive

5
False positive

95.4 .902 90.7

Negative 14
False negative

83
True negative

86.5

88.0% 94.3%

User’s Accuracy

TABLE 3 Results table from t-test for differences between reflectance in each spectral band (red, green, blue, and NIR) for true positives (Leafy Spurge) and false
negative (Missed Leafy Spurge) leafy spurge polygons. Values shown are mean reflectance (Mean) and p-values (p-value) testing the differences between the class
means for each spectral band. p-values marked with * are significantly different.

Spectral band of multispectral imagery

Red Green Blue Near infrared

Assigned Class Mean p-value Mean p-value Mean p-value Mean p-value

Leafy Spurge 308 0.8 434 0.1 368 0.6 1359 .03*

Missed Leafy Spurge 309 433 367 1323
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of the spectrum. Near infrared reflectance was the only spectral band that
was significantly different between correctly identified and missed leafy
spurge polygons, so more bands of varying wavelengths of near infrared
may be useful in distinguishing leafy spurge’s unique spectral signature.
Leafy spurge does seem to be spectrally identifiable within the narrow
portion of the electromagnetic spectrum captured by multispectral
satellite imagery products (Mitchell and Glenn, 2009). Our detection
rates of leafy spurge varied, as infestations that consist of a single leafy
spurge plant, leafy spurge growing with trace amounts of bare ground,
leafy spurge growing on banks, and leafy spurge growing with riparian

shrub vegetation cover types were more likely to be missed by our
Random Forest imagery classification. This may be because the
presence of a single leafy spurge population is much harder to detect
with 1) somewhat limited spatial resolution (4 m× 4mpixels), 2) changes
to bank geomorphology caused by seasonal flooding during the period
between satellite imagery collection and validationmapping, and 3), dense
shrub cover obscuring leafy spurge invasions beneath their canopy.
Overstory canopy coverage alone, however, was not a significant
predictor of leafy spurge classification accuracy.

In other research projects where remote sensingwas used tomap leafy
spurge, leafy spurge growing below overstory canopy coverage, leafy

TABLE 4 Logistic regression output for statistically significant predictors of leafy spurge classification of ground mapped leafy spurge polygons with odds ratio
(values < 1, decrease odds of correctly classifying leafy spurge, values > 1, increase odds of correctly classifying leafy spurge), impact on leafy spurge prediction rates,
and p-values of logistic regression.

Odds ratio Leafy spurge classification likelihood p-value

Geomorphology - Bank .180 − .036

Bare Ground - Low 23.515 + .010

Bare Ground -Moderate 38.318 + .003

Bare Ground - High 89.334 + .000

Vegetation – Shrub .106 − .021

Leafy Spurge – Single Plant .136 − .011

Polygon Area 1.000 + .018

TABLE 5 Logistic regression output for statistically significant predictors of leafy spurge classification of validation locations of leafy spurge with odds ratio (values < 1,
decrease odds of correctly classifying leafy spurge, values > 1, increase odds of correctly classifying leafy spurge), impact on leafy spurge prediction rates, and p-values
of logistic regression.

Odds ratio Odds of spurge p-value

Discrete Patch 8.129 + .0480

Leafy Spurge Percent Cover 1.556 + 5.8e-08

FIGURE 3
Results of frequency analysis of the three most mistaken species,
smooth brome, willow, and dandelions, with their proportional presence
in the full validation dataset (white), false positives (black, mistakenly
classified as leafy spurge), and false negatives (grey, present with
missed leafy spurge infestations).

FIGURE 4
Results of frequency analysis of false positive plant species with
their proportional presence in the full validation dataset (white) and false
positives (black, mistakenly classified as leafy spurge).

Frontiers in Remote Sensing frontiersin.org06

Mattilio et al. 10.3389/frsen.2023.1086085

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1086085


spurge on steep slopes, sparse leafy spurge populations, and small
infestations of leafy spurge were missed (Anderson et al., 1996; Parker
and Hunt, 2004; Glenn et al., 2005), aligning with our decreased detection
accuracy of singly leafy spurge plants and leafy spurge growing below
shrub and tree canopy. In contrast to our challenges of mapping leafy
spurge in riparian areas of the Yampa River, detection accuracy of leafy
spurge mapping in Crook County, Wyoming was improved when
growing in riparian areas (Williams and Raymond, 2002; Parker and
Hunt, 2004). Adding ancillary spatial data, like vegetation cover maps and
distance to waterways may improve remote sensing classification results
(Hunt et al., 2010; Dubovik et al., 2021). Additionally, the incorporation of
citizen science data of dense, unobscured leafy spurge presence collected
and submitted from within the study area could be incorporated, to
increase training samples and obtain samples away from the Yampa River
riparian zone (Vaz et al., 2019) but increasing the temporal resolution of
the imagery with a times series of multiple imagery scenes through the
leafy spurge bloom could.

One major limitation of this project is the difference between June
2021 validation mapping and satellite imagery data collection in July of
2019. Imagery procurement was limited by YRLSP budget, and
2021 SPOT seven satellite imagery purchase and classification would
have been beneficial, as leafy spurge invasions may have advanced. If
further remote sensing was to be conducted for mapping general leafy
spurge invasion in the area, free coarser resolution multispectral
imagery like Sentinel-2 (10 m × 10 m pixels) could be used. As leafy
spurge is a deep-rooted perennial and a prolific seed producer (St. John
and Tilley, 2014) and largely uncontrolled in the Yampa River Valley,
leafy spurge populations away from the dynamic riverbanks are unlikely
to decrease, excepting extreme environmental conditions, like drought.
In experimental plots where herbicide was applied in the fall of 2019,
treatments that controlled leafy spurge reproduction left woody stems
which were recognizable during validation mapping in the summer of
2021, so some signs of past leafy spurge may be recognizable even if
plants do not regrow from established roots. Additionally, our training
samples were biased toward dense, large, and unobscured leafy spurge
recognizable inmultispectral imagery sets andmay not represent the full
range of leafy spurge infestation abundance, size, and habitat type.

Though the success rates of the validation mapping efforts were
generally low (59% of validation locations were correctly classified),
the validation locations were chosen based on anomalies in YRLSP
members expert knowledge of the area or features and areas of interest
from the classification prediction. For example, a series of validation
points were set in a seasonal Yampa River tributary, to see if positively
classified pixels as leafy spurge were true leafy spurge locations. Leafy
spurge detection accuracy varies within the 190 leafy spurge positive
presence locations within the dataset, as the Random Forest
classification was more accurate at identifying leafy spurge
populations growing as discrete patches rather than scattered
populations. Discrete patches of leafy spurge and infestations with
higher leafy spurge percent cover were more likely to be correctly
classified by the Random Forest imagery classification. Casady et al.
(2006) found that detected leafy spurge patches had higher average
leafy spurge percent cover and higher average patch size, with
infestations smaller than 200 m2 and 30% leafy spurge cover less
likely to be identified (Casady et al., 2006). Dense populations with
high leafy spurge cover may have more recognizable spectral
signatures than sparse populations. Discrete boundaries of leafy
spurge patches may be more identifiable, as scattered populations
might share pixel space with other land cover types, though the

number of additional species present at validation locations did not
significantly influence classification accuracy of leafy spurge.

5 Conclusion

Satellite remote sensing appears to be a viable option for leafy spurge
mapping on the Yampa River, but classification accuracy varies with
leafy spurge infestation characteristics and environment. Small and/or
sparse infestations of leafy spurge may go undetected, and detection
rates decreased in areas with shrubs and overstory canopy coverage.
Identification was most accurate when leafy spurge coverage was dense.
Validation mapping suggests that leafy spurge is best identified when
growing in discrete patches and when leafy spurge densities are higher.

If leafy spurge mapping was to be conducted again in the Yampa, a
time series of imagery that represents early season and mid-season would
be employed to try to differentiate leafy spurge from other vegetation, as
suggested by Lake et al. in a heterogeneous Minnesota landscape (Lake
et al., 2022). If left unmanaged, leafy spurge may become a much more
prevalent invader in Moffat and Routt Counties, producing more
propagules to spread through the Yampa, Green, and Colorado Rivers.
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